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Abstract—Autonomous agents are limited in their ability to
observe the world state. Partially observable Markov decision
processes (POMDPs) model planning under world state uncer-
tainty, but POMDPs with multimodal beliefs, continuous actions,
and nonlinear dynamics suitable for robotics applications are
challenging to solve. We present a dynamic programming algo-
rithm for planning in the belief space over discrete latent states
in POMDPs with continuous states, actions, observations, and
nonlinear dynamics. Unlike prior belief space motion planning
approaches which assume unimodal Gaussian uncertainty, our
approach constructs a novel tree-structured representation of
possible observations and multimodal belief space trajectories,
and optimizes a contingency plan over this structure. We apply
our method to problems with uncertainty over the reward or
cost function (e.g., the configuration of goals or obstacles), un-
certainty over the dynamics, and uncertainty about interactions,
where other agents’ behavior is conditioned on latent intentions.
Three experiments show that our algorithm outperforms strong
baselines for planning under uncertainty, and results from an
autonomous lane changing task demonstrate that our algorithm
can synthesize robust interactive trajectories.

I. INTRODUCTION

Planning under uncertainty resulting from a limited ability
to observe the world state is a critical capacity for autonomous
agents. Noisy actuators, imperfect sensors, and perceptual
limitations such as occlusion contribute to the uncertainty that
agents face when deciding to act. Even with perfect sensors
and perception, latent states of the world can remain opaque,
such as whether there is an open parking spot on the next
block, or whether another driver intends to yield. Planning un-
der this uncertainty requires balancing the cost of exploratory
actions with the potential benefit of the information gained.
However, the problem of planning under partial observability,
which can be formalized as a partially observable Markov
decision process (POMDPs), is generally intractable [1].

Trajectory optimization techniques have proven very ef-
fective for robotics applications [2, 3], but typically require
the state to be fully observable (or separately estimated).
Extensions of trajectory optimization to belief space plan-
ning allow partial observability to be captured within motion
planning algorithms suitable for continuous, nonlinear robotic
systems [4, 5]. However, these approaches primarily consider
unimodal Gaussian uncertainty, which limits their utility for
problems with multimodal structure. Real-world uncertainty
is multimodal: for example, in autonomous driving there is

uncertainty about the presence and state of vehicles that are
occluded or out of sensor range, about the functional mode of
the vehicle and its components, about the state of the envi-
ronment, and about the characteristics, intentions and beliefs
of other drivers. This multimodal structure can be represented
within general POMDPs, which can be solved by general-
purpose solvers [6, 7]. However, optimizing continuous actions
for motion planning is challenging for state of the art POMDP
solvers.

In this paper, we propose a trajectory optimization approach
for solving nonlinear, continuous state, action, and observation
POMDPs with non-Gaussian beliefs over discrete latent vari-
ables. Our approach, called Partially Observable Differential
Dynamic Programming (PODDP), builds and optimizes a
contingency plan over a tree of possible observations and
trajectories in the belief space. We derive techniques for
dynamic programming over the trajectory tree, which involve
propagating an approximate value function through the belief
state dynamics defined by observations and Bayesian belief
updating. Lastly, we describe a practical hierarchical dynamic
programming decomposition of the problem, which greatly
enhances the efficiency of our approach.

PODDP solves several important classes of nonlinear, con-
tinuous planning problems with uncertainty over discrete latent
states: (1) Tasks where the cost function depends on an
uncertain latent state, e.g., where an agent must approach or
avoid goals or obstacles which may be in a finite number
of locations. (2) Tasks where the dynamics are conditioned
on the uncertain latent mode of the system, e.g., contact
mode, component status, or environmental condition (e.g.,
smooth vs. rough terrain). (3) Interactive tasks where other
agents’ trajectories impose dynamic costs and are influenced
by their latent intentions, e.g., autonomous driving systems
must plan under uncertainty about other vehicles’ interactive
trajectories, conditioned on their drivers’ situational awareness
level, intention to cooperate, etc.

We demonstrate the efficacy of our method experimentally
in instances of each of these problem classes. We compare
our algorithm with two strong baselines: 1) a “fully ob-
servable” baseline under which DDP treats the maximum-
likelihood state as the true world state, and 2) a baseline
which combines multiple latent state hypotheses inside the cost
function, weighted by their probabilities. Lastly, we consider



a challenging autonomous driving setting in which the model
must plan interactive lane changing trajectories, and show
that PODDP can plan and execute successful lane change
trajectories by inferring whether another agent intends to yield.

II. RELATED WORK

In this section we first review related research on planning
under partial observability, with a focus on methods for
planning in continuous action spaces. We review techniques
for Gaussian belief space planning, as well as general-purpose
POMDP solvers which can plan continuous actions. Finally,
we review research applying related techniques, primarily in
applications related to autonomous driving.

A. Gaussian belief space planning

Trajectory optimization methods compute a sequence of
continuous actions to minimize the expected cost of the
resulting state sequence. For the special case of problems
with linear dynamics, quadratic costs, and additive Gaussian
process and observation noise, optimal continuous feedback
policies can be computed by the LQG algorithm using dy-
namic programming [8]. In the LQG setting, the separation
principle [9] implies that the same feedback policy is optimal
when applied to either the true state in the fully observable
setting, or to the estimated state in the partially observable
setting. In the nonlinear setting, differential dynamic pro-
gramming (DDP) [10] and iterative LQG (iLQG) [11, 3]
extend the dynamic programming approach to compute locally
optimal feedback policies for systems with smooth, nonlinear
dynamics and non-quadratic costs. Like LQG, these algorithms
separate estimation and control, and thus they are unable to
plan exploratory actions, because they do not explicitly model
the effect of observations on the belief dynamics.

Methods for trajectory optimization in Gaussian belief
space [12, 4, 13, 5] model the belief dynamics induced by
Gaussian process and observation noise by augmenting the
state to include the estimated mean and covariance, and prop-
agating the belief state with a Kalman filter. These methods use
two main ways to approximate the belief dynamics, both of
which yield policies which explore the environment to gain
information that is useful for optimizing future value. The
first approximation assumes that the observations from each
state take their maximum-likelihood values [12, 13, 5], which
makes the belief space dynamics deterministic. This heuristic
reduces to the LQG algorithm in the linear-quadratic-Gaussian
setting, and provides a lower bound on the uncertainty of
future belief states in the nonlinear setting. The second ap-
proximation propagates the belief state by propagating the
linearized Gaussian belief state dynamics within each step
of dynamic programming. [4] showed that this approach
outperforms the maximum-likelihood observations assumption
in a Gaussian belief space planning task. However, because
this approximation is only applicable in the Gaussian case,
our approach in this paper is more analogous to the maximum-
likelihood observations approximation.

Other techniques use LQG controllers to facilitate sampling-
based Gaussian belief space motion planning. [14] and [15]
use LQG and Kalman filtering to estimate the expected co-
variance, cost, and success probability of tracking trajectories
computed by RRT in the presence of motion and sensor noise.
The results of both methods demonstrate that they are able
to plan information gathering, exploratory actions. The FIRM
algorithm [16] constructs an information-state roadmap, an
extension of probabilistic roadmaps [17] to problems with
motion and sensing uncertainty, where nodes and edges lie in
the belief space, and uses LQG controllers to break the curse
of history and guarantee reachability of nodes in the roadmap.

There are several reinforcement learning techniques (RL)
for solving continuous state-action-observation POMDPs. The
model-based approach of [18] extends the PILCO algorithm to
continuous state-action Gaussian POMDPs, by simultaneously
learning a Gaussian process dynamical model and policy.
[19] uses model-free deep variational RL to jointly learn a
dynamical model and a continuous policy, and applies this
method to a Gaussian mountain hike problem.

Gaussian belief space planning assumes that all uncertainty
can be represented in the form of unimodal Gaussian distribu-
tions over the state space. In contrast, our work here captures
the multimodality of real-world uncertainty. In a similar spirit
to our work, [20] proposes an extension of the belief space
planning method of [12] to hybrid continuous dynamics, in
which a (partially observable) discrete mode determines the
continuous dynamics of the system. Several other techniques
have been developed for this setting, including the Sequential
Action Control approach of [21], and the point-based method
of [22] (which assumes discrete actions).

B. General purpose POMDP solvers

Point-based solvers [6] allow medium-sized POMDPs to
be solved offline, and have been extended to continuous
state spaces [23], but require discretization of the action and
observation spaces. Monte-Carlo tree search (MCTS) is an
online method which can scale to large domains [24, 7].
MCTS can naturally handle continuous state spaces, but
continuous observations and actions are more complicated.
Fine discretization of the observation space is feasible because
MCTS can scale to large observation spaces; however, MCTS
scales exponentially in the number of actions, so only coarse
discretization of actions is tractable [25]. Several techniques
have been proposed to handle continuous actions and ob-
servations. The approach of [26] applies double progressive
widening [27] to actions and observations in MCTS, while [28]
performs local search in the belief tree for optimal continuous
actions.

C. Related applications

The active SLAM problem is similar in spirit to the problem
classes we consider involving uncertainty about the spatial
structure of the environment (see Experiments 1 and 2). The
large literature in this area [29] is outside the scope of this
review. [30] presents a belief space planning approach to



the active SLAM problem, and augments Gaussian dynamics
and observations with binary random variables representing
whether a measurement is taken. [5] scales belief space
planning to 50 landmarks in an active SLAM experiment.

The large literature on interactive and intention-aware plan-
ning approaches for mobile robots is highly relevant to our
work. Although planning for interaction using a world model
that includes (a distribution over) other agents’ predicted
trajectories as part of the dynamics – treating other agents
as “part of the environment” – is a popular technique [31,
32, 33, 34, 35], planning over uncertain predictions of other
agents’ trajectories can lead to the freezing robot problem [36],
while treating other agents’ trajectories as deterministically
predictable can lead to overly aggressive behavior [32, 35].
A variety of solutions have been proposed. Intention-aware
POMDP formulations of interaction are conceptually similar
to the approach we take: they solve a POMDP with a belief
state defined by hidden intent variables which influence the
predicted trajectory for each agent [31, 26, 34]. [37] con-
siders interactive behavior that is governed by a continuous
latent variable which determines other drivers’ “social value
orientation” (SVO). The algorithm computes a game-theoretic
equilibrium, given SVO estimates, for all vehicles simultane-
ously using multi-agent trajectory optimization techniques. We
take inspiration from the approach of trajectory-optimization
through differentiable models of other agents in [32]. Although
we consider a simpler class of agent models than the ones in
that paper, our approach can be applied to richer agent models,
and it has the advantage of handling uncertainty about agents’
intentions. [38] considers conceptually similar autonomous
driving tasks benefiting from information gathering actions to
infer the mental state of another driver (attentive or distracted);
however, unlike our work, their approach does not optimize the
tradeoff between exploration and exploitation. The algorithm
we propose is structurally similar to the contingency-planning
approach of [33]; however, our method operates over obser-
vation horizons longer than one step, and takes a DDP-based
approach to trajectory optimization.

III. PROBLEM FORMULATION

We consider discrete-time, finite-horizon POMDPs with
hybrid continuous and discrete states, continuous actions, and
continuous observations. The discrete state is dynamic and
partially observable, and the belief over this state can represent
multimodal, time-varying uncertainty about the robot state, the
world state, or the state of other agents. For simplicity we
assume the continuous state is fully observable, and only the
discrete state is partially observable; our formulation is thus a
mixed-observability MDP model [39], which yields a compact
representation of the belief space and dynamics. We partition
the state space S = X × Z into a continuous state space X ,
and a finite latent state space Z . We denote the continuous
control space U , and the continuous observation space O.

The system dynamics are defined by the conditional
distribution over the next state 〈xt+1, zt+1〉 ∈ S,
p(xt+1, zt+1|xt, zt,ut), which depends on the current state

〈xt, zt〉 ∈ S, and control ut ∈ U . The distribution over
observations ot ∈ O, p(ot|xt, zt) is also conditioned on the
current state. The graphical model shown in Fig. 1 defines the
conditional dependencies in the model.

zt+1zt

xt xt+1

ot ot+1

ut

...

...

...

...

Fig. 1: Graphical model of our POMDP formulation. The continuous
state xt and observation ot are observed variables, ut is the control,
and zt is the dynamic partially observable discrete latent state.

The belief about the dynamic latent state zt depends on the
history of observed states, controls, and observations. We use
recursive Bayesian filtering over the conditional dependency
structure in Fig. 1 to update the belief, given the latest obser-
vation, which (based on the mixed-observability assumption)
includes both ot+1 and xt+1:

bt+1(zt+1) , P (zt+1|ot+1,xt+1,ut,xt, . . . ,o1,x1,u0,x0,b0)

= P (zt+1|ot+1,xt+1,xt,ut,bt)

= η · p(ot+1|xt+1, zt+1)p(xt+1|zt+1,xt,ut)

·
∑
zt∈Z

P (zt+1|zt)bt(z),

(1)

where η is a normalizing constant. We define the belief update
function h(ot+1,xt+1,xt,ut,bt) to denote the deterministic
belief dynamics, such that the mapping from bt to bt+1

satisfies (1).
The running loss function l(xt, zt,ut) represents the cost

incurred by the current state and control, and the final loss
function lf (xT , zT ) represents the cost at the end of the
planning horizon; both functions are assumed to have positive
semi-definite Hessian matrices. For compactness, we also
define the belief state loss function as the expected cost under
the current belief:

l(xt,bt,ut) = Ezt∼bt l(xt, zt,ut)
lf (xT ,bT ) = EzT∼bT lf (xT , zT ).

(2)

The objective to be minimized is the expected cumulative cost-
to-go, which is a function of the current belief state and a
closed-loop policy πt(xt,bt) mapping belief states to controls:

Jπt (xt,bt) = E
ot+1:T

[
T−1∑
τ=t

l(xτ ,bτ , πτ (xτ ,bτ )) + lf (xT ,bT )

]
.

(3)



The value function maps each belief state to the cost-to-go of
the optimal policy from that state:

Vt(xt,bt) = min
π
Jπt (xt,bt). (4)

Applying the dynamic programming principle [8], we compute
the value function recursively:

Vt(xt,bt) = min
ut

[
l(xt,bt,ut)

+ Eot+1,xt+1
[Vt+1(xt+1, h(ot+1,xt+1,xt,ut,bt))]

]
V πT (xT ,bT ) = lf (xT ,bT ),

(5)

where the expectation is over ot+1,xt+1 ∼
p(ot+1,xt+1|xt,bt,ut), and the value at the planning
horizon T is the final belief state cost. In the next section
we describe our PODDP method for computing the value
function and optimal policy.

IV. PARTIALLY OBSERVABLE DIFFERENTIAL DYNAMIC
PROGRAMMING

Standard dynamic programming-based trajectory optimiza-
tion methods, such as DDP and iLQG, optimize a trajectory by
alternating a forward pass which rolls out the dynamics and
costs using a control sequence, and a backward pass which
takes a local second-order approximation to the value function,
and updates the control sequence to optimize this approximate
value function. This process repeats until convergence to a
locally optimal trajectory. Dynamic programming algorithms
for Gaussian belief space planning [4] proceed similarly –
they roll out a trajectory in the forward pass by propagating a
belief state defined by the mean and covariance of the state,
and optimize an approximate value function around the belief
state trajectory in the backward pass.

PODDP plans in belief space, but unlike Gaussian belief
space planning, the marginal distribution over observations
is not unimodal, and the belief-space trajectory cannot be
approximated by propagating a single sequence of means
and variances. In our setting, the discrete latent variable zt
induces a multimodal distribution over observations, and a
non-Gaussian belief state, which induces a(n infinitely branch-
ing) tree of observations, beliefs, and controls in the forward
pass. The PODDP forward pass approximates this tree with a
finite representation which we call a “trajectory tree”, shown
in Fig. 2, analogous to the policy tree representation in the
classic discrete POMDP setting [40], or to the belief tree
in MCTS methods [7]. The PODDP backward pass proceeds
from the leaves of the tree, and propagates the value through
observations and belief updates via dynamic programming.
The remainder of this section will derive the forward and
backward passes of the PODDP algorithm, and then derive
an efficient hierarchical decomposition of the trajectory tree.

A. PODDP forward pass

Given an initial belief state 〈x0,b0〉, the PODDP forward
pass constructs a trajectory tree which approximates the in-
finite space of possible control, state, observation, and belief

u0

u1
1 u2

1

x0, b0

o2
1, x2

1, b2
1

o11, x1
1, b1
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Fig. 2: PODDP trajectory tree. Starting from belief state 〈x0,b0〉,
tree construction rolls out control u0 for each possible latent state
value i ∈ {1, . . . , |Z|}, assuming next state xi

1 and observation oi
1

take their maximum likelihood values, and bi
1 is given by Bayesian

belief updating. Tree construction proceeds recursively from each
xi
1,b

i
1 until the finite horizon is reached. Note that in the last layer

we have suppressed the superscript labels for oT−1,xT−1,bT−1 for
clarity – the notation is cumbersome, and should record the complete
history of latent state values used to generate the state and observation
sequence preceding the node.

sequences up to a finite horizon T . Each node in the tree
is labeled by the control to be executed if that node is
reached. From each node, a finite set of branches is generated
corresponding to possible state transitions, observations, and
belief updates given the control and belief state at that node.
A control node is created following each branch, and tree
expansion proceeds recursively until the finite horizon is
reached. Fig. 2 sketches the trajectory tree structure, and
Algorithm 1 (included in online Supplementary Materials1)
defines the algorithm formally.

To approximate the infinite set of continuous observations
that are possible from each node, we introduce a maximum-
likelihood outcomes (MLO) assumption [12]: For each pos-
sible latent state value z ∈ Z , we compute the maximum
likelihood state transition and observation, and perform the
belief update as defined in lines 12-14 of Algorithm 1. The
MLO assumption transforms the operation of sampling next
states and observations into a deterministic function, which
PODDP requires to be differentiable. To enable this, we
assume that p(xt+1|zt+1,xt,ut) and p(ot+1|xt+1, zt+1) are
Gaussian distributions with additive noise; MLO corresponds
to taking the mean of the distributions, and differentiation
involves taking the derivative of the underlying process.

The forward pass is called on every iteration of PODDP.
On the first iteration, the nominal controls Unom are initialized
to a default value (constant in our examples in this paper;
more complex schemes are possible), and nominal belief states
Snom and control updates k and K are set to null. At later
iterations, k and K, computed by the backward pass, specify
modifications to the previous control Unom, and provide linear

1Available at https://davidqiu1993.github.io/poddp-paper

https://davidqiu1993.github.io/poddp-paper


feedback control gains to stabilize the trajectory around Snom,
respectively. The step size α of the trajectory update is set by
a line search procedure [3].

B. PODDP backward pass

The PODDP backward pass operates over a trajectory
tree, proceeding from the leaves, and propagating a local
second-order approximation to the value function through the
observations, dynamics, and belief updates that take place at
each node. Locally optimal control modifications and linear
feedback control gains are computed at each node, which
are used to update the trajectory during the next forward
pass. Algorithm 2 (see Supplementary) defines this procedure,
which traverses the trajectory tree in depth-first order, and
propagates the necessary derivatives backward through the tree
recursively. Next, we derive the remaining core function of
Algorithm 2, which performs the second-order approximation
to the value function, and returns the derivatives and control
updates to be propagated backward through the trajectory tree.

1) Backward control updates and derivatives: Dynamic
programming over the trajectory tree requires differentiation
through the value function and belief space dynamics at each
observation and belief update. However, differentiation with
respect to the belief state is problematic, because perturbations
can push the belief off of the |Z|−1-dimensional simplex. To
solve this issue, we reparameterize the belief in terms of the
unconstrained vector β ∈ R|Z|, such that:

b(z;β) =
exp (β (z))∑

z′∈Z exp (β (z′))
. (6)

This reparameterization allows the belief state to be repre-
sented by the vector s = [x;β] ∈ X × R|Z|. The reparam-
eterized belief update naturally derives from (1), such that
βt+1(zt+1) = log(bt+1(zt+1)).

To derive the backward pass for PODDP, we define a
function over perturbations of s and u:

Qt(δs, δu) =∑
z∈Z

b(z;β+δβ)
[
l(x+δx, z,u+δu)

+ Vt+1

(
xML, h(oML,xML,x+δx,u+δu,b(β+δβ))

)]
−
∑
z∈Z

b(z;β)
[
l(x, z,u)

+ Vt+1

(
xML, h(oML,xML,x,u,b(β))

)]
, (7)

where we have implicitly decomposed δs into δx and δβ, and
where oML and xML are generated according to the MLO
assumption defined in lines 12-14 of Algorithm 1.

We take a second order expansion of (7):

Q(δs, δu) ≈ Q̃(δs, δu)

= 1TQTs δs + 1TQTuδu + δsTQsuδu

+
1

2
δsTQssδs +

1

2
δuTQuuδu,

where each term denotes a first- or second-derivative
with respect to the subscripted variables. We present the

first derivatives in the main text to show their struc-
ture; the Hessians are derived in Supplementary. We note
that in this work, we employ the standard iLQR ap-
proach of discarding the Hessians of the dynamics [3].
Using the following abbreviations: bz = b(z;β); lz =
l(x,u, z); s′z = [xML;h(oML,xML,x,u,b(β))], and V ′z =
V
(
xML, h(oML,xML,x,u,b(β))

)
, we have:

Qs =
∑
z∈Z

[
∂bz
∂δs

(lz + V ′z ) + bz

(
∂lz
∂δs

+
∂s′z
∂δs

T
∂V ′z
∂s′z

)]

Qu =
∑
z∈Z

[
bz

(
∂lz
∂δu

+
∂s′z
∂δu

T
∂V ′z
∂s′z

)]
.

Although ∂bz/∂δs involves differentiating the belief bz , the
reparameterization in (6) makes these derivatives well-behaved
near the simplex boundary, where the derivatives take on
small values for extremal beliefs, and small perturbations
δs do not violate the simplex constraint. The ∂s′z/∂δs and
∂s′z/∂δu terms involve differentiating through the dynamics,
observation model, and belief update. The ∂V ′z/∂s

′
z terms are

the backward derivatives propagated within the ∆ argument
in Algorithm 2; we discuss how they are computed in Supple-
mentary.

The optimal control modification δu∗ for belief state pertur-
bation δs is computed by minimizing the quadratic model Q̃:

δu∗(δs) = arg min
u
Q̃(δs, δu) = k +Kδs, (8)

where k = −Q−1uuQu is an open-loop modification to be
applied in the forward pass, and K = −Q−1uuQus is a linear
closed-loop feedback gain.

C. Hierarchical PODDP

Because each node in the trajectory tree has |Z| successor
nodes, the tree has size (|Z|T −1)/(|Z|−1) = O(|Z|T ). This
exponential growth is manageable for short horizons (T < 5),
but for longer horizons it is infeasible. However, branching
on every timestep may be unnecessary for several reasons.
First, many robotics systems have high control frequency, but
much lower state estimation frequency, particularly for sensor
fusion from multiple modalities (i.e., cameras, LIDAR, etc.)
In this case, it makes sense to align the observation timesteps
in the planner with those when observations are expected to
occur in the system. Second, planning with a lower observation
frequency than that of the actual system can yield trajectories
which take observation contingencies into account, but are
more conservative than those which observe at every timestep.

To derive the hierarchical PODDP algorithm, we follow the
derivation above, but partition the trajectory into a set of k
segments indexed by τ0 = 0, τ1, . . . , τk = T . We define the
value of the belief state at the beginning of a segment similarly
to (5), but we now accumulate the cost over τi+1 − τi steps,
and take the expected value of the belief state at the end of



τi+1 − τi steps:

Vτi(xτi ,bτi) = min
uτi:τi+1−1

[
τi+1−1∑
t=τi

l(xt,bτi ,ut)

+ Eoτi+1−1,xτi+1

[
Vτi+1(xτi+1

,bτi+1
)
]]
. (9)

The second-order expansion can be taken similarly to before,
but now with respect to perturbations of each segment. Hier-
archical dynamic programming can be further optimized by
applying standard DDP recursions to each step of a segment.
Our experiments use hierarchical PODDP with k = 3.

V. RESULTS

Our experiments analyze the performance of PODDP in
three environments, designed to test the ability of PODDP to
plan under uncertainty about goal locations, environment dy-
namics, and other agents’ intentions, respectively. We compare
PODDP against two baselines. The first baseline, “Maximum-
likelihood DDP” (MLDDP), assumes the latent state with the
highest probability is the true latent state, and runs standard
DDP. At each observation point, it replans based on the
updated most-likely belief. The second baseline, “Probability
weighted DDP” (PWDDP), minimizes the expected cost of
a control sequence with respect to the current belief – this
is straightforward to implement using a version of (9), with
k = 1 and τk equal to the horizon length. All runtimes were
evaluated using a 3.0GHz Intel Xeon processor.

A. Experiment 1: Planning under cost function uncertainty

Our first experiment tests PODDP in a scenario in which the
location of a goal is unknown, and determined by the latent
world state. The environment is structured as a “T-Maze”: a
long corridor (surrounded by high cost regions), which splits
left and right at the end. A binary latent state determines
whether the goal is on the Left or Right. Goal costs which
increase quadratically with the distance from the true goal
location induce the agent to move to the goal as quickly as
possible. Figs. 3(a,b) show the environment with a contour
plot of the location cost overlaid, and goal locations marked
with X’s. The agent is a simulated vehicle with non-holonomic
bicycle dynamics (see Supplementary). The observation func-
tion generates a Gaussian random variable conditioned on
the latent state z: the mean is −1 if z = Left and 1 if
z = Right. The uncertainty of the observation decreases as
the vehicle moves to the end of the maze; this uncertainty is
parameterized by a smooth function which outputs the variance
of the distributions, illustrated by the background gradient in
Fig. 3(a) (see Supplementary for details).

Fig. 3(a) shows a trajectory tree optimized by PODDP,
starting from the belief b(z = Left) = 0.51. The tree con-
tains a contingency plan for all possible maximum-likelihood
outcome sequences, conditioned on the latent state values.
Fig. 3(b) shows 100 executed trajectories with uncertainty
level = 9.0, sampling observations and state transitions from
their true distributions (these trajectories were used to compute
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Fig. 3: Experiment 1 results. (a) Visualization of the PODDP
trajectory tree in the T-Maze environment. (b) 100 sampled PODDP
executions, used to compute the datapoint in (c) for observation un-
certainty level = 9.0. See Supplementary for comparable executions
of MLDDP and PWDDP. (c) Mean cumulative cost and variance of
PODDP are lower than those of MLDDP and PWDDP across thirteen
different observation uncertainty levels. Error bars show standard
error.

the average cost for uncertainty level = 9.0 in Fig. 3(c)),
and replanning with a reducing horizon after each observation.
Among the executed trajectories are some in which the agent
first moves to one side, then crosses back to seek the goal
on the other side. These correspond to “bad” observations
which indicate the incorrect latent state; Fig. 3(a) shows that
PODDP plans for these contingencies, and Fig. 3(b) shows
that it handles them gracefully, by responding conservatively
to noisy observations so that recovery is possible following
later, better observations. Executed trajectories of MLDDP and
PWDDP are shown in Supplementary; both methods exhibit
poor qualitative performance in this task.

Fig. 3(c) compares the average cumulative cost incurred
by PODDP versus two baseline models over 100 sampled
executions in each of thirteen environments, each with a
different level of observation uncertainty. PODDP outperforms
both baselines, and has lower variance.

Table I shows the results of a targeted analysis on the
mean cumulative cost incurred by each model, and the av-
erage planning time of each model over 1000 executions for
observation uncertainty level = 9.0. PODDP incurred signif-
icantly less mean cumulative cost than MLDDP (t(1998) =
16.1, p < 0.000001, and PODDP also incurred significantly
less mean cumulative cost than PWDDP (t(1998) = 17.4, p <
0.000001). The mean cumulative costs incurred by MLDDP
and PWDDP were also significantly different (t(1998) =
2.2, p = 0.03). The planning time for PODDP (i.e., time to
optimize the initial trajectory tree in Fig. 3(a)) is substantially
higher than those of the baselines, suggesting a tradeoff
between computational complexity and optimality. However,



with this extra computation, PODDP is able to compute a
realistic contingency plan over a long horizon, while MLDDP
and PWDDP rely on frequent replanning to react to the
dynamics of belief updating over the task horizon.

TABLE I: Mean cumulative cost and planning time (seconds) to
convergence (standard error in parentheses) incurred by each model
in Experiment 1 over 1000 samples.

PODDP MLDDP PWDDP
cost 134.0 (2.5) 248.6 (6.6) 230.7 (4.9)
time 1.61 (0.00) 0.48 (0.00) 0.24 (0.00)

B. Experiment 2: Planning under dynamical mode uncertainty

Our second experiment tests whether PODDP can plan in
the belief space over uncertain, partially observable dynam-
ical modes of the environment. In this scenario, shown in
Figs. 4(a,b), a vehicle with non-holonomic bicycle dynamics
is moving toward a goal (marked by an X) over rough terrain
(e.g., “mud”), which exerts a resistive force while the vehicle is
moving (see Supplementary for details), imposing cost due to
the additional force required to maintain a constant velocity. A
binary latent state determines the smoothness of the terrain to
the right of the vehicle: When the latent state z = Smooth, the
terrain to the right exerts low resistive force; when z = Rough,
the terrain to the right is rough, with high resistive force equal
to that on the left. Figs. 4(a,b) show the gradient from rough
to smooth terrain going from left to right when the latent state
is Smooth.

The only source of information about the latent state comes
from observing the dynamics themselves via the state se-
quence. This presents a challenging planning problem: explor-
ing the environment to infer the value of z requires a costly
detour right into the potentially smooth area, but the payoff
is large if the agent can learn that the terrain is smooth and
reduce cost thereafter.

Fig. 4(a) shows that PODDP plans an exploratory policy
to learn the value of z. The planned trajectory, starting from
the belief b(z = Smooth) = 0.49, immediately moves to
the right to gain information about z; the first observation
yields strong information about z, and the beliefs become near
certain, which the conditional plan can then exploit either by
veering into the smooth area, or by heading directly through
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Fig. 4: Experiment 2 results. (a) Visualization of the PODDP
trajectory tree in the Rough Terrain environment. (b) 100 sampled
PODDP executions. See Supplementary for comparable executions
of MLDDP and PWDDP.

the mud to the goal location. Fig. 4(b) shows 100 sampled
executions through the rough terrain environment, demon-
strating the robustness of the planned PODDP trajectory tree.
Executed trajectories of MLDDP and PWDDP are shown in
Supplementary; it is qualitatively apparent that both methods
fail to explore the environment, and are therefore unable to
exploit the potential Smooth terrain as quickly as PODDP.

Table II reports the mean cumulative cost incurred by each
model, and the average planning time of each model over 1000
executions with b0(Smooth) = 0.49. PODDP incurred signifi-
cantly lower mean cumulative cost than MLDDP, (t(1998) =
4.1, p = 0.00005), and PODDP also incurred significantly
less mean cumulative cost than PWDDP (t(1998) = 3.9, p =
0.00009). The mean cumulative costs incurred by MLDDP and
PWDDP were not significantly different (t(1998) = 0.89, p =
0.37). The planning time for PODDP (i.e., time to optimize
the trajectory tree in Fig. 4(a)) is again higher than those
of the baselines, but this tradeoff may be acceptable when
minimizing costs via exploration is a high priority.

TABLE II: Mean cumulative cost and planning time (seconds) to
convergence (standard error in parentheses) incurred by each model
in Experiment 2 over 1000 samples.

PODDP MLDDP PWDDP
cost 220.3 (1.2) 226.4 (0.8) 228.0 (1.5)
time 0.90 (0.00) 0.27 (0.00) 0.34 (0.00)

C. Experiment 3: Latent intention-aware interactive lane
changing

This experiment tested the ability of PODDP to plan trajec-
tories through a belief state which includes the latent intentions
of other agents, and dynamics which capture agents’ intention-
dependent actions. This scenario adds another vehicle to the
state space, parameterized by a longitude and velocity (the
planner vehicle again has bicycle dynamics). The other vehicle
dynamics are modeled using a modified Intelligent Driver
model (IDM) that considers the leading vehicle from another
lane (see Supplementary for details). The latent state represents
whether the other driver is Nice or Aggressive. If the other
driver is Nice, it is assumed to have a lower desired speed,
and to slow down for others. If the other driver is Aggressive,
it is assumed to have a higher desired speed, and to not slow
down for others.

Fig. 5(a) shows that PODDP can plan in the belief space
over the other vehicle’s latent state, and can construct a
contingency plan to change lanes ahead of the other vehicle
if it is inferred to be Nice, or change lanes behind the other
vehicle if it is inferred to be Aggressive. Fig. 5(b) and (c) show
the successful execution (black past trajectories) of these plans
(red future trajectories). PWDDP also succeeds at changing
lanes ahead of the Nice driver, and changing lanes behind
the Aggressive driver. However, as shown in Table III, over
1000 sample executions, PWDDP incurred significantly higher
cost than both PODDP t(1998) = 12.1, p < 0.000001 and
MLDDP t(1998) = 8.2, p < 0.000001. In contrast, MLDDP
fails to pass the Nice driver, and always changes lanes behind
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Fig. 5: Experiment 3 results. (a) Visualization of the PODDP trajectory tree in the Lane Change environment. (b) Sampled PODDP execution
against a Nice driver. PODDP successfully merges ahead of the other vehicle. (c) Sampled PODDP execution against an Aggressive driver.
PODDP successfully merges behind the other vehicle. See Supplementary for videos of executed trajectories for PODDP, MLDDP and
PWDDP.

both Nice and Aggressive drivers, and incurs significantly
higher cost than PODDP (t(1998) = 2.4, p < 0.02). This is
because the maximum likelihood initial belief is Aggressive,
which leads MLDDP to immediately decelerate, losing the
chance to pass. To provide a fair comparison, we reran 1000
sample executions starting from b(z = Nice) = 0.51. With
this prior, MLDDP succeeds at passing the Nice driver, and
changing lanes behind the Aggressive driver, but incurs a
higher mean cumulative cost, as shown in Table III. We also
ran PODDP and PWDDP in this condition; as expected, the
mean cumulative costs incurred were not significantly different
than with the other prior.

The planning time for PODDP to compute the initial plan
(i.e., the trajectory tree in Fig. 5(a)), shown in Table III, is
substantially greater than those of MLDDP or PWDDP. How-
ever, Table III shows that the replanning time for PODDP – the
total time spent replanning after each of the two observations
during the task – is not qualitatively higher than the replanning
time of the baselines. This suggests that although PODDP is
more expensive to run initially, the latency of replanning (with
warm-start) is comparable to that of the other algorithms due
to the quality of the initial solution.

TABLE III: Mean cumulative cost, and planning and replanning time
(seconds) to convergence (standard error in parentheses) incurred by
each model in Experiment 3 over 1000 samples.

b0(Nice) = 0.49 b0(Nice) = 0.51
PODDP MLDDP PWDDP MLDDP

cost 126.9 (0.8) 131.6 (1.7) 153.8 (2.0) 142.5 (1.9)
plan
time

1.19 (0.002) 0.13 (0.002) 0.14 (0.002) 0.12 (0.002)

replan
time

0.069 (0.000) 0.052 (0.001) 0.064 (0.001) 0.080 (0.001)

VI. CONCLUSION

We presented the PODDP algorithm for planning in
POMDPs with continuous states, actions, and observations,

nonlinear dynamics, and partially observable discrete latent
states. PODDP is practical for many classes of problems: We
demonstrated that it can perform belief-space planning in tasks
with uncertainty about the (1) cost function, (2) dynamics, or
(3) latent intentions of other agents.

There are many interesting directions for further research.
In our formulation, the dynamics of the latent state of the
system are assumed to be independent of the continuous
state and control variables. Removing this limitation could
allow application to systems with discrete variables of interest,
such as contact variables in manipulation or locomotion2.
Extending PODDP to allow partially observable continuous as
well as discrete states could enable even broader applicability
of continuous belief-space trajectory optimization methods.

Our formulation relied on a “maximum likelihood out-
comes” assumption to approximate the belief dynamics of
the system. This was sufficient for our algorithm to plan
exploratory trajectories that were robust to noisy observa-
tions. Future research will explore sampling-based methods
to improve performance by better approximating the belief
dynamics.

We proposed a hierarchical decomposition to manage the
exponential complexity of the naive algorithm in the observa-
tion frequency; aggressively limiting the observation horizon
to a single future observation yields linear scaling in the
number of latent states, and may be sufficient for some
applications [33]. Although in our experiments the planning
time of PODDP was slower than that of simple baselines, the
method produces a more global policy in the belief space,
which could remain valid over a longer horizon, with less
need for frequent replanning, and faster replanning when it
is needed. An advantage of our framework is that it provides
tunable parameters for engineers to manage these tradeoffs.

2We thank an anonymous reviewer for this suggestion, and two other
anonymous reviewers for helpful feedback and suggestions.
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APPENDIX A
DERIVATION OF HESSIANS FROM THE BACKWARD PASS

PODDP computes a second-order approximation Q̃ to the
Q-function defined in the main text, by taking first- and
second-derivatives of the dynamics and cost functions with
respect to perturbations of the belief state δs and controls
δu. For reasons of space and brevity, we derive the Hessian
matrices here.

Note that following the standard iLQR approach [3], we
discard the terms involving Hessians of the dynamics ∂2s′z

∂δs2 ,
∂2s′z
∂δs∂δu , and ∂2s′z

∂δu2 .
The Hessians of the Q̃-function are:

Qss =
∑
z∈Z

∂2bz
∂δs2

(lz + V ′z ) + 2
∂bz
∂δs

(
∂lz
∂δs

+
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∂δs

T
∂V ′z
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)T

+

bz

(
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T
∂2V ′z
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T
∂2s′z
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)]

Qsu =
∑
z∈Z
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∂δs

(
∂lz
∂δu

+
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∂δu

T
∂V ′z
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Quu =
∑
z∈Z

[
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)]
APPENDIX B

DERIVATION OF VALUE FUNCTION RECURSION FROM THE
BACKWARD PASS

We can plug δu∗ from (8) in the main text back into Q̃,
to calculate the approximate quadratic model of the value
function V :

∆V ≈ −1

2
kTQuuk

∂V

∂s
≈ Qs −

1

2
KTQuuk

∂2V

∂s2
≈ Qss −

1

2
KTQuuK.

(10)

In Algorithm 2, the OPTIMIZECONTROL function returns ∆ =〈
V, ∂V∂s ,

∂2V
∂δs2

〉
.

APPENDIX C
SUPPLEMENTARY EXPERIMENTAL METHODS AND

RESULTS

A. Dynamic Bicycle Model

Agents in all experiments follow a 4-dimensional dynamic
bicycle model. The state is defined as [x, y, φ, v], where x is
the longitudinal position, y is the longitudinal position, φ is
the orientation, and v is the velocity. The control is defined as
[ω, a], where ω is the steering angle, and a is the longitudinal
acceleration.

The dynamics are:

x(t+ δt) = x(t) + v cos(φ)δt+ εx

y(t+ δt) = y(t) + v sin(φ)δt+ εy

φ(t+ δt) = φ(t) +
v

L
tan(ω)δt+ εφ

v(t+ δt) = v(t) + aδt+ εv,

where L is the vehicle length, and εx, εy , εφ, and εv are
additive Gaussian noise terms.

B. Experiment 1
1) Scenario formulation: In the T-Maze environment, the

observability of the latent state improves as the agent moves
longitudinally down the corridor. Given an uncertainty level ξ
the standard derivation of the observation is formulated as

σ(y) = 0.1 + (s(−(y − c))/c) · ξ

where y is the coordinate of the agent along the hallway, c =
18.0 defines the border of the region with noisy observations,
and s(x) =

(√
x2 + 1 + x

)
/2. An observation o conditioned

on the latent state z is then sampled from the observation
function given by:

o ∼ O(·|z, y) =

{
N (−1, σ(y)) if z = Left
N (1, σ(y)) if z = Right

where N is a normal distribution function. The goal on the
Left is located at (−25.0, 25.0) and the goal on the Right is
located at (25.0, 25.0).

2) Model evaluation: To quantitatively evaluate the model,
we ran 100 executions in thirteen different environments,
each with a different level of observation uncertainty in
figure 3(a). The observation uncertainty levels used were
[0.0, 1.0, 2.0, . . . , 12.0]. Each execution sampled the ground
truth world state from the prior (set to b0(Left) = 0.51),
and sampled observations from the observation distribution at
each observation timestep. For this experiment, the timestep
was δt = 0.1, and the planning horizon was T = 60. We
set the number of segments for hierarchical PODDP to be
k = 3; therefore there were two observations over the planning
horizon, at τ1 = 20 and τ2 = 40. All algorithms replanned
after each observation. The vehicle dynamics were assumed to
be deterministic, because they were independent of the latent
state value, and not relevant for the task.

3) Supplementary results: Fig. 6(a) and (b) show sampled
trajectories from MLDDP and PWDDP, respectively. Both
algorithms fail to explore as aggressively as PODDP, which
accelerates more rapidly in the beginning of the trajectory
to get as reliable an observation as possible. The possible
MLDDP trajectories split at each observation point, depending
on the maximum-likelihood belief state following the obser-
vation. These trajectories commit strongly to the maximum-
likelihood goal location, and when a bad observation occurs,
they are unable to recover. The PWDDP trajectories also
commit early, based on minimizing the goal costs to both
locations simultaneously, weighted by their probability. Only
when the initial observation is very strong can PWDDP can
commit strongly.



Algorithm 1: FORWARDPASS (x0, b0, Unom, Snom, k,K, α,Z, T )

1 U ← [ ] ; // initialize control map indexed by histories
2 S(‘Root’)← [x0,b0] ; // initialize belief state map indexed by histories
3 FORWARDTREE (‘Root’, U, S, Unom, Snom,∅,∅, α,Z, T, 1) ; // trajectory tree recursion
4 return U, S ; // return updated trajectory tree
5 Procedure FORWARDTREE(H,U, S, Unom, Snom, k,K, α,Z, T, d)
6 if k(H),K(H) 6= ∅ then // apply control updates
7 U(H)← Unom(H) + αk(H) +K(H)(S(H)− Snom(H)) ;
8 else
9 U(H)← Unom(H) ;

10 for z ∈ Z do
11 [xH ,bH ]← S(H) ;
12 xML = arg maxx p(x|xH , U(H), z) ; // assume ML state transition
13 oML = arg maxo p(o|xML, z) ; // assume ML observation
14 b′ = BELIEFUPDATE(oML,xML, U(H),xH ,bH) ;
15 S([H, z])← [xML,b

′] ; // append new belief state to history
16 if d < T then
17 FORWARDTREE ([H, z], U, S, Unom, Xnom, k,K, α,Z, T, d+ 1) ; // recurse

Algorithm 2: BACKWARDPASS (U, S,Z, T )

1 k,K ← [ ] ; // initialize control update maps indexed by histories
2 BACKWARDTREE (‘Root’, k,K,U, S,Z, T, 1) ; // compute control updates recursively
3 return k,K ; // return control updates
4 Procedure BACKWARDTREE(H, k,K, u, S,Z, T, d)
5 ∆← [ ] ; // initialize backward derivatives map
6 for z ∈ Z do
7 if d < T then // recursively compute backward derivatives and updates
8 ∆(z)← BACKWARDTREE([H, z], k,K,U, S,Z, T, d) ;
9 else // set backward derivatives as empty

10 ∆(z)← ∅ ;

11 kH ,Kh,∆H ← OPTIMIZECONTROL(U(H), S(H),∆,Z) ;
12 k(H),K(H)← kH ,KH ; // update control update maps
13 return ∆H ; // return backward derivatives
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Fig. 6: Experiment 1 results. (a) 100 sampled MLDDP executions. (b)
100 sampled PWDDP executions. Compare to Main Text, Fig. 3(c).

C. Experiment 2

1) Scenario formulation: To capture the rough terrain in
this experiment, we assume that the terrain exerts a location

dependent resistive force on the vehicle. We model this force
as a velocity-dependent deceleration r, such that:

r = ρ ∗ tanh(v),

which the vehicle must overcome with its own acceleration,
incurring cost. The parameter ρ varies according to the loca-
tion. In our scenario, ρ is high for rough terrain, and zero for
smooth terrain. The transition in our environment is sigmoidal
in the x-dimension.

For this experiment, the timestep was δt = 0.1, and the
planning horizon was T = 60. We set the number of segments
for hierarchical PODDP to be k = 3; therefore there were
two observations over the planning horizon, at τ1 = 20 and
τ2 = 40.

In this scenario, because all information about the latent
state comes from the state transitions, we assume additive



Gaussian noise at each timestep for all state variables to make
the belief state dynamics nontrivial.

2) Supplementary results: Fig. 7(a) and (b) show sampled
trajectories from MLDDP and PWDDP, respectively. Both
algorithms fail to explore as aggressively as PODDP, which
veers left into the potentially smooth area to obtain as reliable
an observation as possible. MLDDP initially assumes that
z = Rough, and heads directly for the goal location. If the
maximum-likelihood belief after the first observation is z =
Smooth, it moves into the smooth region. PWDDP actually
moves away from the smooth region, because this trajectory
allows it to minimize distance from the goal with the same
control sequence under both dynamics. This is an interesting
and subtle feature of PWDDP. It also moves into the smooth
region if the belief updates in favor of z = Smooth, but it does
not explore or plan for future observation contingencies.
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Fig. 7: Experiment 2 results. (a) 100 sampled MLDDP executions. (b)
100 sampled PWDDP executions. Compare to Main Text, Fig. 4(b).

D. Experiment 3

1) Scenario formulation: In this scenario, we assume that
both vehicles start from a velocity of 10 m/s. The dynamics
of the other vehicle follows a modified IDM, which shares
the same acceleration control principle of the standard IDM,
while considering the leading vehicle on an adjacent lane
by modifying the distance metric between the agent and the
leading vehicle from s(l, a) = |yl − ya| to

s′(l, a) = σc,δ (|xl − xa|) · s(l, a)

where x is the coordinate perpendicular the the lanes and y
is the coordinate along the lanes with l indicating the leading
vehicle and a indicating the IDM agent, and sigmoid function
σc,δ(x) =

(
1 + exp−δ(x−c)

)−1
. For the sigmoid function σ,

parameter c is assigned with the value of half the lane width,
and δ is an adjustable steepness parameter.

For this experiment, the timestep was δt = 0.1, and the
planning horizon was T = 30. We set the number of segments
for hierarchical PODDP to be k = 3; therefore there were
two observations over the planning horizon, at τ1 = 10 and
τ2 = 20.

In this scenario, because all information about the latent
state comes from the other vehicle’s state transitions, we
assume additive Gaussian noise at each timestep for all state
variables to make the belief state dynamics nontrivial.

2) Supplementary results: Please see our GitHub page
(https://davidqiu1993.github.io/poddp-paper) for supplemen-
tary videos.

https://davidqiu1993.github.io/poddp-paper
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