
APPENDIX A
DERIVATION OF HESSIANS FROM THE BACKWARD PASS

PODDP computes a second-order approximation ˜Q to the
Q-function defined in the main text, by taking first- and
second-derivatives of the dynamics and cost functions with
respect to perturbations of the belief state �s and controls
�u. For reasons of space and brevity, we derive the Hessian
matrices here.

Note that following the standard iLQR approach [3], we
discard the terms involving Hessians of the dynamics @2s0z

@�s2 ,
@2s0z

@�s@�u , and @2s0z
@�u2 .

The Hessians of the ˜Q-function are:

Qss =

X

z2Z

2

4@
2bz

@�s2
(lz + V 0

z) + 2

@bz
@�s

@lz
@�s

+

@s0z
@�s

T @V 0
z

@s0z

!T

+

bz

@2lz
@�s2

+

@s0z
@�s

T @2V 0
z

@s02z

@s0z
@�s

+

@V 0
z

@s0z

T @2s0z
@�s2

!#

Qsu =

X

z2Z

2

4@bz
@�s

@lz
@�u

+

@s0z
@�u

T @V 0
z

@s0z

!T

+

bz

@2lz

@�s@�u
+

@s0z
@�s

T @2V 0
z

@s02z

@s0z
@�u

+

@V 0
z

@s0z

T @2s0z
@�s@�u

!#

Quu =

X

z2Z

"
bz

@2lz
@�u2

+

@s0z
@�u

T @2V 0
z

@s02z

@s0z
@�u

+

@V 0
z

@s0z

T @2s0z
@�u2

!#

APPENDIX B
DERIVATION OF VALUE FUNCTION RECURSION FROM THE

BACKWARD PASS

We can plug �u⇤ from (8) in the main text back into ˜Q,
to calculate the approximate quadratic model of the value
function V :

�V ⇡ �1

2

kTQuuk

@V

@s
⇡ Qs � 1

2

KTQuuk

@2V

@s2
⇡ Qss � 1

2

KTQuuK.

(10)

In Algorithm 2, the OPTIMIZECONTROL function returns � =D
V, @V

@s ,
@2V
@�s2

E
.

APPENDIX C
SUPPLEMENTARY EXPERIMENTAL METHODS AND

RESULTS

A. Dynamic Bicycle Model

Agents in all experiments follow a 4-dimensional dynamic
bicycle model. The state is defined as [x, y,�, v], where x is
the longitudinal position, y is the longitudinal position, � is
the orientation, and v is the velocity. The control is defined as
[!, a], where ! is the steering angle, and a is the longitudinal
acceleration.

The dynamics are:

x(t+ �t) = x(t) + v cos(�)�t+ ✏x

y(t+ �t) = y(t) + v sin(�)�t+ ✏y

�(t+ �t) = �(t) +
v

L
tan(!)�t+ ✏�

v(t+ �t) = v(t) + a�t+ ✏v,

where L is the vehicle length, and ✏x, ✏y , ✏�, and ✏v are
additive Gaussian noise terms.

B. Experiment 1
1) Scenario formulation: In the T-Maze environment, the

observability of the latent state improves as the agent moves
longitudinally down the corridor. Given an uncertainty level ⇠
the standard derivation of the observation is formulated as

�(y) = 0.1 + (s(�(y � c))/c) · ⇠
where y is the coordinate of the agent along the hallway, c =
18.0 defines the border of the region with noisy observations,
and s(x) =

�p
x2

+ 1 + x
�
/2. An observation o conditioned

on the latent state z is then sampled from the observation
function given by:

o ⇠ O(·|z, y) =
⇢N (�1,�(y)) if z = Left
N (1,�(y)) if z = Right

where N is a normal distribution function. The goal on the
Left is located at (�25.0, 25.0) and the goal on the Right is
located at (25.0, 25.0).

2) Model evaluation: To quantitatively evaluate the model,
we ran 100 executions in thirteen different environments,
each with a different level of observation uncertainty in
figure 3(a). The observation uncertainty levels used were
[0.0, 1.0, 2.0, . . . , 12.0]. Each execution sampled the ground
truth world state from the prior (set to b0(Left) = 0.51),
and sampled observations from the observation distribution at
each observation timestep. For this experiment, the timestep
was �t = 0.1, and the planning horizon was T = 60. We
set the number of segments for hierarchical PODDP to be
k = 3; therefore there were two observations over the planning
horizon, at ⌧1 = 20 and ⌧2 = 40. All algorithms replanned
after each observation. The vehicle dynamics were assumed to
be deterministic, because they were independent of the latent
state value, and not relevant for the task.

3) Supplementary results: Fig. 6(a) and (b) show sampled
trajectories from MLDDP and PWDDP, respectively. Both
algorithms fail to explore as aggressively as PODDP, which
accelerates more rapidly in the beginning of the trajectory
to get as reliable an observation as possible. The possible
MLDDP trajectories split at each observation point, depending
on the maximum-likelihood belief state following the obser-
vation. These trajectories commit strongly to the maximum-
likelihood goal location, and when a bad observation occurs,
they are unable to recover. The PWDDP trajectories also
commit early, based on minimizing the goal costs to both
locations simultaneously, weighted by their probability. Only
when the initial observation is very strong can PWDDP can
commit strongly.

Algorithm 1: FORWARDPASS (x0, b0, Unom, Snom, k,K,↵,Z, T)

1 U [] ; // initialize control map indexed by histories

2 S(‘Root’) [x0,b0] ; // initialize belief state map indexed by histories

3 FORWARDTREE (‘Root’, U, S, Unom, Snom,?,?,↵,Z, T, 1) ; // trajectory tree recursion

4 return U, S ; // return updated trajectory tree

5 Procedure FORWARDTREE(H,U, S, Unom, Snom, k,K,↵,Z, T, d)
6 if k(H),K(H) 6= ? then // apply control updates

7 U(H) Unom(H) + ↵k(H) +K(H)(S(H)� Snom(H)) ;
8 else
9 U(H) Unom(H) ;

10 for z 2 Z do
11 [xH ,bH] S(H) ;
12 xML = argmax

x

p(x|xH , U(H), z) ; // assume ML state transition

13 oML = argmax

o

p(o|xML, z) ; // assume ML observation

14 b

0
= BELIEFUPDATE(oML,xML, U(H),xH ,bH) ;

15 S([H, z]) [xML,b0
] ; // append new belief state to history

16 if d < T then
17 FORWARDTREE ([H, z], U, S, Unom, Xnom, k,K,↵,Z, T, d+ 1) ; // recurse

Algorithm 2: BACKWARDPASS (U, S,Z, T)

1 k,K [] ; // initialize control update maps indexed by histories

2 BACKWARDTREE (‘Root’, k,K,U, S,Z, T, 1) ; // compute control updates recursively

3 return k,K ; // return control updates

4 Procedure BACKWARDTREE(H, k,K, u, S,Z, T, d)
5 � [] ; // initialize backward derivatives map

6 for z 2 Z do
7 if d < T then // recursively compute backward derivatives and updates

8 �(z) BACKWARDTREE([H, z], k,K,U, S,Z, T, d) ;
9 else // set backward derivatives as empty

10 �(z) ? ;

11 kH ,Kh,�H OPTIMIZECONTROL(U(H), S(H),�,Z) ;
12 k(H),K(H) kH ,KH ; // update control update maps

13 return �H ; // return backward derivatives

(a)

-5
-20 -10 0 10 20

0
5

10
15
20
25
30

MLDDP Executed Trajectories (b)

-5
-20 -10 0 10 20

0
5

10
15
20
25
30

PWDDP Executed Trajectories

Fig. 6: Experiment 1 results. (a) 100 sampled MLDDP executions. (b)
100 sampled PWDDP executions. Compare to Main Text, Fig. 3(c).

C. Experiment 2

1) Scenario formulation: To capture the rough terrain in
this experiment, we assume that the terrain exerts a location

dependent resistive force on the vehicle. We model this force
as a velocity-dependent deceleration r, such that:

r = ⇢ ⇤ tanh(v),
which the vehicle must overcome with its own acceleration,
incurring cost. The parameter ⇢ varies according to the loca-
tion. In our scenario, ⇢ is high for rough terrain, and zero for
smooth terrain. The transition in our environment is sigmoidal
in the x-dimension.

For this experiment, the timestep was �t = 0.1, and the
planning horizon was T = 60. We set the number of segments
for hierarchical PODDP to be k = 3; therefore there were
two observations over the planning horizon, at ⌧1 = 20 and
⌧2 = 40.

In this scenario, because all information about the latent
state comes from the state transitions, we assume additive

Gaussian noise at each timestep for all state variables to make
the belief state dynamics nontrivial.

2) Supplementary results: Fig. 7(a) and (b) show sampled
trajectories from MLDDP and PWDDP, respectively. Both
algorithms fail to explore as aggressively as PODDP, which
veers left into the potentially smooth area to obtain as reliable
an observation as possible. MLDDP initially assumes that
z = Rough, and heads directly for the goal location. If the
maximum-likelihood belief after the first observation is z =

Smooth, it moves into the smooth region. PWDDP actually
moves away from the smooth region, because this trajectory
allows it to minimize distance from the goal with the same
control sequence under both dynamics. This is an interesting
and subtle feature of PWDDP. It also moves into the smooth
region if the belief updates in favor of z = Smooth, but it does
not explore or plan for future observation contingencies.

(a)
MLDDP Executed Trajectories

-4 -2 0 2 4

0
10
20
30
40
50
60

b0(Smooth)
 = 0.49

(b)
PWDDP Executed Trajectories

-4 -2 0 2 4

0
10
20
30
40
50
60

b0(Smooth)
 = 0.49

Fig. 7: Experiment 2 results. (a) 100 sampled MLDDP executions. (b)
100 sampled PWDDP executions. Compare to Main Text, Fig. 4(b).

D. Experiment 3

1) Scenario formulation: In this scenario, we assume that
both vehicles start from a velocity of 10 m/s. The dynamics
of the other vehicle follows a modified IDM, which shares
the same acceleration control principle of the standard IDM,
while considering the leading vehicle on an adjacent lane
by modifying the distance metric between the agent and the
leading vehicle from s(l, a) = |yl � ya| to

s0(l, a) = �c,� (|xl � xa|) · s(l, a)
where x is the coordinate perpendicular the the lanes and y
is the coordinate along the lanes with l indicating the leading
vehicle and a indicating the IDM agent, and sigmoid function
�c,�(x) =

�
1 + exp

��(x�c)
��1

. For the sigmoid function �,
parameter c is assigned with the value of half the lane width,
and � is an adjustable steepness parameter.

For this experiment, the timestep was �t = 0.1, and the
planning horizon was T = 30. We set the number of segments
for hierarchical PODDP to be k = 3; therefore there were
two observations over the planning horizon, at ⌧1 = 10 and
⌧2 = 20.

In this scenario, because all information about the latent
state comes from the other vehicle’s state transitions, we
assume additive Gaussian noise at each timestep for all state
variables to make the belief state dynamics nontrivial.

2) Supplementary results: Please see our GitHub page
(https://davidqiu1993.github.io/poddp-paper) for supplemen-
tary videos.

https://davidqiu1993.github.io/poddp-paper

	Introduction
	Related work
	Gaussian belief space planning
	General purpose POMDP solvers
	Related applications

	Problem formulation
	Partially observable differential dynamic programming
	PODDP forward pass
	PODDP backward pass
	Backward control updates and derivatives

	Hierarchical PODDP

	Results
	Experiment 1: Planning under cost function uncertainty
	Experiment 2: Planning under dynamical mode uncertainty
	Experiment 3: Latent intention-aware interactive lane changing

	Conclusion
	Appendix A: Derivation of Hessians from the backward pass
	Appendix B: Derivation of value function recursion from the backward pass
	Appendix C: Supplementary Experimental Methods and Results
	Dynamic Bicycle Model
	Experiment 1
	Scenario formulation
	Model evaluation
	Supplementary results

	Experiment 2
	Scenario formulation
	Supplementary results

	Experiment 3
	Scenario formulation
	Supplementary results

